The Breadth and Width of a Megabit

av Jörgen Städje den 29 Apr 2016

How many megabits can actually fit between Stockholm and Uppsala? How long is a data packet as it travels in the optical fibre?

Light doesn’t fly through the fibre infinitely fast. Instead it travels slightly slower than in space. As the speed is well known, one could theoretically measure a data packet inside an optical fibre with a ruler to estimate its length. After a packet has been sent out from Stockholm it takes some time for it to arrive in e.g. Uppsala. As the data packets have a well known length it should also be possible to calculate how many bytes are in transit in the fibre between Stockholm and Uppsala. This would be helpful to get some sort of approximation, some sort of humanely comprehensible view of what is travelling through the fibres. We will try to find out how long the packets are, and how many of them can be stuffed in a length of fibre.

The bits and pieces of an IP packet

All data sent over optical fibres is packaged according to the IP protocol. The IP protocol is a digital envelope around your text or images (your payload), and this is how the payload gets receiver and sender addresses attached, plus some error checking. The reason for doing this is that all the data ending up in your computer will always be correct, regardless of whether it has only gone five metres or half way around the Earth.

ip-packet

Oversimplified, an IP packet expressed in blocks looks like this. It begins with a header containing the receiver and sender addresses, data about the packet length, a sequence number and so on, enabling networking equipment to know where the packet is going, how long it should be, and which one it is in a sequence of packets, etc. The header is always the same size, i.e. 160 bits or 20 bytes.

The next block is the payload, that is, your text or parts of your image. The payload can differ in length but usually the longest possible is chosen: 12000 bits or 1500 bytes.

Finally there’s a checksum, containing proof that the data arrived undamaged. It is always 24 bits or three bytes in length.

So, a typical packet is 1523 bytes in length as it is sent out on the optical fibre.

The length of an email

The packet is typically sent on the fibre as a series of blinks of light, where one blink represents a ”one” bit and no blink represents a zero. On a 100 Gbps link this translates to one hundred billion possible blinks per second. You could view it like this.

helt-datapaket

An oversized light sabre? The picture shows the undersigned wielding a hand torch, sending a data packet. Suppose I have a really fast thumb so I am able to blink IP packets at 100 gigablinks per second. A data packet of the biggest size, with a 160 bits header and 12000 bits of payload might look like this. 24 metres in length. It would take about 0.12 microseconds to send.

Below is the size of the 160 bit header, some 33 centimetres. It wouldn’t be visible in the previous image.

160-bitar

An eight bit byte is a mere 1.6 centimetres long and would easily fit on a thumbnail.

1-byte

(The above is only partly true. The transmission can be optimised by sending several bits at the same time on different wavelengths and different polarisations in the same fibre, and by sending several streams of data on several parallel fibres. Et cetera. But let’s forget about that.)

The speed of light in the medium

You’ll have to pretend that the medium in front of my torch is glass and not air. Light travels slower in glass than it does in air, and slower in air than in vacuum. This has to do with the index of refraction in the medium, which also is the parameter determining how sharply the light will bend when it passes out of one material and into another.

Prism_rainbow_schema

This is the reason we can see a prism breaking up sunlight into different colours. The refractive index of glass is different for different wavelengths, which is why they refract differently and spread out so nicely. The rainbow is exactly the same phenomenon. The higher the refractive index, the slower the light will travel.

The vacuum of space has the lowest index of refraction, namely one. The speed of light in vacuum is 299,792,458 m/s, very close to 300,000 km/s.

The index of refraction in air is somewhat greater, 1.0003, giving light a speed of some ~298.896.000 m/s in air.

Of greater importance to the average SUNET user is the index of refraction in glass, about 1.5, giving light a speed of ~199.000.000 m/s in an optical fibre.

Measuring Sweden in megabytes

This is how we are able measure the length of the data paths in megabytes. Take a look at the map below.

nordenkarta-med-siffror

We can roughly cram in 62.5 kilobytes per kilometre of fibre. Thus, Sweden is 97.9 MB (1567) from Ystad in the south to Treriksröset in the far north.

But wait! There’s more!

In the near future, several nations will have established research colonies on the Moon, perhaps even within the lifespan of SUNET C, around the year 2030. How will they communicate with Earth? It is obvious that “Houston, we read you, over.” Beep. Crackle. “Tranquillity base…” will not be sufficient for the modern Internet man. Internet will have to be extended to the Lunar base. Laser-based communication with the International Space Station has already been tested and shown to work. For fast data transfers to the Lunar base, a laser will have to be set up on the Moon’s near side, pointed at Earth. As the Moon is not spinning with respect to the Earth, only one laser will be necessary. A suitable place for a Lunar base would be the Moon’s north pole, since it is always in sunlight, which spells out positive for the use of photovoltaic cells. There also seems to be water available in the craters in constant shadow in the same region.

But the Earth rotates with respect to the Moon, so the Earth needs several receiver stations. A few would be required on each continent, as a laser beam cannot penetrate clouds.

earth-and-moon

The distance between the Earth and Moon is about 350,000 kilometres. There will be room for about 1.46 gigabytes on a 10 Gbps link (remember that the speed of light in vacuum is 300,000 km/s). You shouldn’t hope for 100 Gbps, due to turbulence in the atmosphere.

The return delay of 1.16 seconds to and from the Moon will make telephone and video conferencing somewhat awkward, although you might eventually get used to it. The main effort will probably be put into services like Facebook and email, where the delay is not so irritating. Other services, like Netflix will also have a field day. There will not be any shortage of bandwidth.

As the first university is established on the Moon, it will undoubtedly have a connection to SUNET. SUNET will rent part of the NASA Earth-Moon link and name it “the Black Network”.

Further reading

Only in Swedish. Please use Google Translate.

Living and communicating on the Moon: http://techworld.idg.se/2.2524/1.500569/snart-kan-du-och-jag-bo-pa-manen
Interplanetary Internet: http://techworld.idg.se/2.2524/1.106378/reportage-fran-jorgen-stadje-interplanetart-internet
Could one make a light sabre? http://techworld.idg.se/2.2524/1.516856/att-svinga-ett-ljussvard—sci-fi-eller-sanning

Fler blogginlägg av Jörgen Städje

SUNET i Hongkong

20 Sep 2017
/ Bloggen fiberfeber

SUNETs handbok i informations- och IT-säkerhet

1 Sep 2017
/ Bloggen fiberfeber

Den ökända hästen från Troja

31 Jul 2017
/ Bloggen fiberfeber

Redundans är allt

3 Jul 2017
/ Bloggen fiberfeber

SNIC-snack

2 Jun 2017
/ Bloggen fiberfeber

We have liftoff: del 5 av 2

3 Maj 2017
/ Bloggen fiberfeber

Maria Häll: We are at the Forefront!

13 Apr 2017
/ Bloggen fiberfeber

Maria Häll: Vi ligger i framkant!

10 Apr 2017
/ Bloggen fiberfeber

We have liftoff, del 4 av 2

22 Feb 2017
/ Bloggen fiberfeber

We have liftoff, del 3 av 2

30 Jan 2017
/ Bloggen fiberfeber

We have liftoff! Del 2 av 2

9 Jan 2017
/ Bloggen fiberfeber

We have liftoff! Del 1 av 2

16 Dec 2016
/ Bloggen fiberfeber

Long Read – Cleanliness is a Virtue

20 Sep 2016
/ Bloggen fiberfeber

Långläsning - tvättar bäst som tvättar först

16 Sep 2016
/ Bloggen fiberfeber

Följa fiber – från Tulegatan till Stockholms universitet.

26 Aug 2016
/ Bloggen fiberfeber

Ericsson, then swänske Lars Magnus

7 Jun 2016
/ Bloggen fiberfeber

One ring to rule them all

24 Maj 2016
/ Bloggen fiberfeber

Den tunga bakgrundstrafiken

12 Maj 2016
/ Bloggen fiberfeber

Long read: How to Design a Fibre Optic Network

5 Maj 2016
/ Bloggen fiberfeber

Welcome to the Fiber Fever Blog!

3 Maj 2016
/ Bloggen fiberfeber

Procuring an Optical Network – Smooth as Silk

2 Maj 2016
/ Blogg

The Nobel Prized Piece of Glass

28 Apr 2016
/ Blogg

What’s the time? Really?

28 Apr 2016
/ Blogg

SUNET in i molnet (3) – molnsäkerhet

26 Apr 2016
/ Blogg

SUNET in i molnet (2) – vad är molnet egentligen?

25 Apr 2016
/ Blogg

SUNET in i molnet (1) – det här får du

25 Apr 2016
/ Blogg

Read about the brand new Sunet network.

11 Apr 2016
/ Bloggen fiberfeber

GÉANT och NORDUnet – bästa kompisar

14 Mar 2016
/ Bloggen fiberfeber

Ljuset kommer från Tyskland

3 Mar 2016
/ Bloggen fiberfeber

Thunderbirds are GO!

19 Feb 2016
/ Bloggen fiberfeber

Ett panorama av verkligheten

17 Feb 2016
/ Bloggen fiberfeber

Det allseende ögat

15 Feb 2016
/ Bloggen fiberfeber

Förstärkning på längden

15 Jan 2016
/ Bloggen fiberfeber

Dämpning och förstärkning i optisk fiber

14 Jan 2016
/ Bloggen fiberfeber

Grundläggande om L-bandet

14 Jan 2016
/ Bloggen fiberfeber

C-bandet – grundläggande om

14 Jan 2016
/ Bloggen fiberfeber

Logaritmer, min käre Watson

14 Jan 2016
/ Bloggen fiberfeber

CERN – krossen som slår sönder materiens minsta byggstenar

12 Jan 2016
/ Bloggen fiberfeber

Riksarkivets samarbete med SUNET

11 Jan 2016
/ Bloggen fiberfeber

One Ring to Rule them - Vetenskapsrådet

21 Dec 2015
/ Bloggen fiberfeber

Alla jättars jätte - Cisco

19 Dec 2015
/ Bloggen fiberfeber

En värld av siffror - belastning

19 Dec 2015
/ Bloggen fiberfeber

Ur led är inte alls tiden - atomur

19 Dec 2015
/ Bloggen fiberfeber

En djungel av kontaktdon

4 Dec 2015
/ Bloggen fiberfeber

Elektronisk enbärsdricka - Juniper

27 Nov 2015
/ Bloggen fiberfeber

Vad är Géant?

26 Nov 2015
/ Bloggen fiberfeber

Radar Love - Eiscat

25 Nov 2015
/ Bloggen fiberfeber

The Color Purple - dispersion

25 Nov 2015
/ Bloggen fiberfeber

Full Metal Packet - switchen

10 Nov 2015
/ Bloggen fiberfeber

Get your kicks on route 66 - routrar

10 Nov 2015
/ Bloggen fiberfeber

Game of Stones - kvarts

10 Nov 2015
/ Bloggen fiberfeber

The Twilight Zone - fotonen

10 Nov 2015
/ Bloggen fiberfeber

Peering – SUNETs ekonomiska ryggrad

9 Nov 2015
/ Bloggen fiberfeber

I mörkret är alla katter infraröda

4 Nov 2015
/ Bloggen fiberfeber

Fibertyperna i nätet och deras optiska felaktigheter

29 Okt 2015
/ Bloggen fiberfeber

Vad är klockan? Egentligen?

21 Okt 2015
/ Bloggen fiberfeber

Nätets centrum

20 Okt 2015
/ Bloggen fiberfeber

Den optiska transceivern

17 Okt 2015
/ Bloggen fiberfeber

Polarisation och informationsöverföring

1 Okt 2015
/ Bloggen fiberfeber

Laserns historia

30 Sep 2015
/ Bloggen fiberfeber

Koherent ljus, vad är det?

28 Sep 2015
/ Bloggen fiberfeber

När allt är klart

28 Sep 2015
/ Bloggen fiberfeber

SUNET – nu ännu bättre!

16 Sep 2015
/ Bloggen fiberfeber

Fibern fruktar fukten

11 Sep 2015
/ Bloggen fiberfeber

Att få kontakt

11 Sep 2015
/ Bloggen fiberfeber

Så tillverkas optisk fiber

31 Aug 2015
/ Bloggen fiberfeber

EMC – EMI – EMP

31 Aug 2015
/ Bloggen fiberfeber

Glasbiten som gav nobelpris

21 Aug 2015
/ Bloggen fiberfeber

Megabit på längden och tvären

21 Aug 2015
/ Bloggen fiberfeber

Långartikel: Fibern från Frostmofjället

21 Aug 2015
/ Bloggen fiberfeber

Upphandling av optiskt nät

25 Jul 2015
/ Bloggen fiberfeber

OptaSense – när fiber blir sensorer

3 Jul 2015
/ Bloggen fiberfeber

Teknisk djupdykning: Optisk magi med ramanförstärkare

2 Jul 2015
/ Bloggen fiberfeber

Teknisk utvikning: 130.000 fibrer som i en liten ask

1 Jul 2015
/ Bloggen fiberfeber

NOCen spekulerar 2: Felrapporter

27 Jun 2015
/ Bloggen fiberfeber

NOCen spekulerar 1: hög belastning

26 Jun 2015
/ Bloggen fiberfeber

Teknisk djupdykning: Optisk magi med EDFA

22 Jun 2015
/ Bloggen fiberfeber

Långartikel: Så designar man ett fiberoptiskt nät

11 Jun 2015
/ Bloggen fiberfeber

Bredare motorväg för svenska data – äntligen en offensiv satsning!

22 Maj 2015
/ Bloggen fiberfeber

Om den interaktiva tidslinjen

21 Maj 2015
/ Bloggen fiberfeber

Om den interaktiva kartan

20 Maj 2015
/ Bloggen fiberfeber

Fiberfeber: Vad som har varit och vad som komma skall

19 Maj 2015
/ Bloggen fiberfeber

Följ bygget av Sunets nät på bloggen Fiberfeber!

18 Maj 2015
/ Bloggen fiberfeber

Teknisk djupdykning: den mystiska routerkraschen

11 Jun 2006
/ Bloggen fiberfeber

2000–2013: Sunet mognar och kapaciteten ökar. Identitetsfederation skapas.

1 Jan 2000
/ Bloggen fiberfeber

1990–1999: Kapaciteten stiger, 2 – 34 – 155 Mbps

1 Jan 1990
/ Bloggen fiberfeber

1968–1989: Idéernas tidevarv. Internets vagga.

1 Jan 1968
/ Bloggen fiberfeber

Jörgen Städje

Jag heter Jörgen Städje och har skrivit om teknik och vetenskap sedan 1984. Friskt kopplat, hälften brunnet!